

Satellite-based post-storm disaster monitoring with high-resolution SAR data

Demo Day Handout October 19, 2021

ACCELERATOR

Jared Green / Mike Leyland / Scott Hixson / Travis Herman / Dennis Schmargon

EPRI / FortisBC / Ameren / LiveEO

jgreen@epri.com

michael.leyland@fortisbc.com

shixson@ameren.com

therman@ameren.com

dennis@live-eo.com

About the Need/Opportunity

The project with **Live-EO** provides an opportunity to demo the use of imagery from a growing number of satellites for quick insights into the extent of the damage from a tornado or windstorm at **Ameren** and FortisBC.

A Picture is Worth a Thousand Woods (Data points)!

About the Technology

- LiveEO identifies storm damages to the grid in near real time using AI-based change detection
- High-resolution synthetic aperture radar (SAR) data in 3 m and 0.5 m resolutions is used for this purpose, because it is not affected by cloud cover
- Individual detections and heatmaps of damage extent are provided shortly after the event

Project Scope

Questions:

- 1. How long does it take to task and capture synthetic-aperture radar (SAR) satellite imagery?
- 2. What is the time period required to acquire and analyze the imagery?
- 3. How accurate are the analytics used to detect changes in the ROW, such as downed trees and damaged utility assets?

Proof of speed

Proof of accuracy

After successful project:

- Automation of storm notification
- Large-scale coverage
- Integrating results in damage cleanup processes

Current main challenge: pre-storm image timing

Options for timing of before-storm image capture:

Immediately before storm

Pro: Few issues with different directions / viewing angles

Con: Potential delays in non-automated process

Set point in time in advance

Pro: Only post-storm image needs to be captured in time

Con: Restrictions on post-storm imagery that can be used,

higher likelihood of false positive detections

 In advance with option to acquire additional image before storm

Pro: Highest reduction of uncertainty

Con: Potentially higher imagery costs

Scope Changes

 Larger number of AOIs and imagery acquisitions for FortisBC

Other challenges

 Missed one storm because of delays in data sharing

Peoria AOI (Ameren)

- Ameren notified LiveEO of a storm in the Peoria area in mid-August
- The proof of speed has been successfully performed

- Pre-storm and post-storm images were taken in opposing orbits, resulting in viewing angle and direction differences
- This led to an increase in false positives
- 32% of AOI has been detected as changes

Examples for plausible changes:

Adjustments and next steps

- LiveEO will perform an additional analysis for Ameren, in which imagery with matching directions and angles will be used
- Pre-storm imagery for the next analyses has been acquired for both Ameren and FortisBC
- We are currently waiting for suitable storm events to occur
- The project team has agreed to make accuracy the priority for the next analyses if there is a trade off with speed (e.g. where it comes to acquisition times)

Our Team

Ameren Representatives:

Scott Hixson, Grid of the Future and Analytics Solutions Manager Travis Herman, Contractor Services Supervisor

FortisBC Representative:

Mike Leyland, Manager, Innovative Initiatives

LiveEO Representative:

Dennis Schmargon, Head of Business Development

EPRI Representative:

Jared Green, Sr. Technical Leader

Our Team Meetings

Biweekly, Thursday 10:30 AM EDT

To get added to meeting, contact Jared Green (jgreen@epri.com)

